بخش بندی ملانوما و دیگر عارضههای رنگی پوست در تصاویر درموسکپی با استفاده از ترکیب روشهای آستانه گذاری مبتنی برالگوریتم یادگیری تقویتی
Authors
Abstract:
تصاویر درموسکپی یکی از ابزارهای اصلی مورد استفاده در تشخیص ملانوما و دیگر عارضه های رنگی پوست به شمار میرود. به علت سختی و عوامل ادراکی در تشخیصهای انسانی، تحلیل کامپیوتری تصاویر درموسکپی یک زمینه جدید تحقیقاتی را به روی محققین گشوده است. یکی از مراحل اصلی در تحلیل این تصاویر، آشکارسازی خودکار مرز عارضه میباشد. یافتن یک آستانه بهینه برای بخش بندی تصاویر دیجیتالی یک کار دشوار در پردازش تصویر میباشد. در این تحقیق یک روش آستانهگذاری جدید مبتنی بر روشهای آستانهگذاری مطرح و الگوریتم یادگیری تقویتی جهت بخشبندی تصاویر درموسکپی ارائه میگردد. در این روش، عامل تقویتی الگوریتم یادگیری، وزنهای بهینه مربوط به آستانههای مختلف را آموزش میبیند و تصویر را توسط آستانه بهینه بخشبندی میکند. یک تابع پاداش برای محاسبه میزان شباهت بین تصویر باینری خروجی و تصویر سطح خاکستری اصلی به کار برده میشود تا میزان پاداش یا جریمه را به عامل تقویتی اعمال کند. از سه روش آستانهگذاری Otsu، Kittler و Kapur جهت ترکیب در عامل تقویتی استفاده میگردد. نتایج بخشبندی با استفاده از اندازهگیری خطا براساس تصاویری که توسط متخصصین پوست بخشبندی شدهاند، مقایسه میگردند. مقایسه نتایج حاصل با روشهای خودکار ارائه شده در مقالات، بیانگر بهبود دقت و کاهش خطا در آشکارسازی مرز عارضه در تصاویر درموسکپی است.
similar resources
بخش بندی ملانوما و دیگر عارضه های رنگی پوست در تصاویر درموسکپی با استفاده از ترکیب روشهای آستانه گذاری مبتنی برالگوریتم یادگیری تقویتی
تصاویر درموسکپی یکی از ابزارهای اصلی مورد استفاده در تشخیص ملانوما و دیگر عارضه های رنگی پوست به شمار می رود. به علت سختی و عوامل ادراکی در تشخیص های انسانی، تحلیل کامپیوتری تصاویر درموسکپی یک زمینه جدید تحقیقاتی را به روی محققین گشوده است. یکی از مراحل اصلی در تحلیل این تصاویر، آشکارسازی خودکار مرز عارضه می باشد. یافتن یک آستانه بهینه برای بخش بندی تصاویر دیجیتالی یک کار دشوار در پردازش تصویر ...
full textآستانه گذاری بهینه چندسطحی تصویر با استفاده از الگوریتم بهینه سازی مبتنی بر یادگیری و تدریس
آستانه گذاری تصاویر یک از محبوبترین روشهای قطعه بندی تصاویر است. در این روش، برای مشخص کردن مقادیر آستانه از هیستوگرام استفاده می شود. در این مقاله، یک روش آستانه گذاری چندسطحی برای قطعه بندی تصاویر مبتنی بر هیستوگرام با استفاده از الگوریتم بهینه سازی مبتنی بر یادگیری و تدریس ارائه شده است. این الگوریتم یک الگوریتم جمعیتگرای جدید است که از تاثیری که یک استاد بر دانش آموزان خود دارد اله...
full textآستانه گذاری بهینه چندسطحی تصویر با استفاده از الگوریتم بهینه سازی مبتنی بر یادگیری و تدریس
آستانه گذاری تصاویر یک از محبوبترین روشهای قطعه بندی تصاویر است. در این روش، برای مشخص کردن مقادیر آستانه از هیستوگرام استفاده می شود. در این مقاله، یک روش آستانه گذاری چندسطحی برای قطعه بندی تصاویر مبتنی بر هیستوگرام با استفاده از الگوریتم بهینه سازی مبتنی بر یادگیری و تدریس ارائه شده است. این الگوریتم یک الگوریتم جمعیتگرای جدید است که از تاثیری که یک استاد بر دانش آموزان خود دارد اله...
full textطبقه بندی ضایعه های پوستی از روی تصاویر درموسکپی با استفاده از ویژگی های رنگ و شکل
در این پژوهش الگوریتم جدیدی برای طبقهبندی تصاویر درموسکپی به دو نوع بدخیم و خوشخیم ارائه شده است. ابتدا یک مرحله پیشپردازش دو مرحلهای شامل فیلترگذاری جهت حذف نویز و فیلتر همومورفیک جهت ارتقاء کیفیت تصویر اعمال میشود. سپس با استفاده از روش آستانهگذاری Otsu ضایعه از نواحی سالم جدا میشود. سپس ویژگیهای شکل و رنگ از تصویر قطعهبندی شده، استخراج میشود. ویژگی های رنگ مبتنی بر ممانهای ...
full textطبقه بندی ضایعه های پوستی از روی تصاویر درموسکپی با استفاده از ویژگی های رنگ و شکل
در این پژوهش الگوریتم جدیدی برای طبقهبندی تصاویر درموسکپی به دو نوع بدخیم و خوشخیم ارائه شده است. ابتدا یک مرحله پیشپردازش دو مرحلهای شامل فیلترگذاری جهت حذف نویز و فیلتر همومورفیک جهت ارتقاء کیفیت تصویر اعمال میشود. سپس با استفاده از روش آستانهگذاری Otsu ضایعه از نواحی سالم جدا میشود. سپس ویژگیهای شکل و رنگ از تصویر قطعهبندی شده، استخراج میشود. ویژگی های رنگ مبتنی بر ممانهای ...
full textMy Resources
Journal title
volume 4 issue 16
pages 37- 48
publication date 2014-02-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023